

Process of Dehydration and HydrateInhibition

Duration: 5 Days

Objectives:

To understand the dehydration and hydrate inhibition Concept and Process of dehydration ,troubleshooting,

Who Should Attend?

Engineers and operators works in operation, design and maintenance fields.

Methodology:

This interactive Training will be highly interactive, with opportunities to advance your opinions and ideas and will include;

- Lectures
- Workshop & Work Presentation
- Case Studies and Practical Exercise
- Videos and General Discussions

Contents:

- Introduction to Natural Gas:
 - Natural Gas Classification
 - Poly Propylene and Gases used in the plant MSDS
- TEG Dehydration Process using flow diagrams
 - Process Design Considerations
 - Still (Stripper)
 - Reboiler
- Introduction To Hydrate Inhibition And Dehydration:
 - -What is a Hydrate , Types of Hydrates, Dehydration & hydrate inhibition meaning and examples
 - -Absorption versus Adsorption comparison chart
- Appropriate methods of dehydration or hydrate inhibition and its properties
- Chemicals
- Solids
- Cooling
- Others
- Problems related to water in process streams associated with natural gas processing and compressed air facilities.
- Predicting hydrate formation

- Water solubility (dew point) in a hydrocarbon gas
- Methods and equipment used to measure the water content of natural gas streams.
- Calculating the saturated water content of hydrocarbon gases and liquids.
- Calculating glycol injection rate required to inhibit hydrate formation in a natural gas stream.
- Troubleshooting Glycol Dehydration Systems:
- Determining appropriate glycol types and lean glycol concentrations for the dehydration of natural gas streams.
 - Recommending actions to correct faulty glycol dehydration systems
- Determining an appropriate solid desiccant type for a dehydration system.
- Estimating the optimum drying cycle time for a solid desiccant dehydrator.
- Calculating regeneration heat loads and the required regeneration gas flow rates of a solid desiccant dehydrator.
- Determining actions that optimize the regeneration heating cycle of a solid desiccant dehydrator.
- Troubleshooting Glycol Dehydration Systems

There are few comments;

- 1. More emphasis on cracked gas dehydration units (like olefin plants)
- 2. Design and troubleshooting of mol sieves dehydration beds.
- 3. Best practices in mol sieve dehydration in terms process, instrumentation, regeneration effectiveness etc.